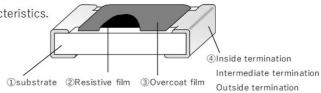
Anti-pulse thick film chip resistors TPC series

TPC10 (0805) *(): II

*(): Inch size

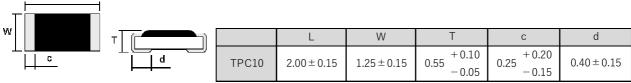

Recommendation

■Structure

■ Features

• The use of accurate resistive film printing technology and trimming has dramatically improved anti-pulse characteristics.

- · Also guaranteed high rated power 0.60W
- · RoHS qualified
- · ELV qualified
- · AEC-Q200 qualified


^{*}This is only a schematic drawing of the structure.

■ Part No. Explanation (Example)

T P C	1 0		Т	1 0 3	J
Product type	Rated power and Size	T.C.R	Packaging form	Nominal resistance value(*)	Resistance tolerance
TPC : Anti-pulse	10:0.6W,0805	V: ± 100 (10 ⁻⁶ /°C)	T : 4mm pitch taping ϕ 180 reel	The resistance value is indicated by 3-digit numbers. E96 sequence products are indicated by a 4-digit.	J: ±5% F: ±1% D: ±0.5%

^{*}The first two numbers are significant numbers, and the third one is the number of zeros "0" following to the first two numbers (multiple of 10).

■Dimensions

* External dimensions are for reference only.

(Unit: mm)

Overcoat film color: Black

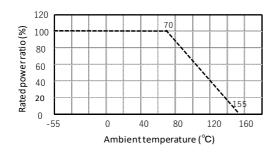
^{*}In the case of the E96 sequence, the first three values mean the significant figures and the fourth one represents the number of 0 following to them (multiplier of 10).

^{*}If there is a decimal point in resistance value, it is indicated by "R" and all numbers are significant numbers.

■ Ratings

	Rated power	Limiting element voltage(*1)	Maximum overload voltage(*2)	Range of rated resistance	Tolerance on rated resistance	Category temperature range		Temperature Coefficient of Resistance(T.C.R)				
					J (±5%)	-55°C~+155°C		+25°C~+155°C	$\pm 200 \times 10^{-6} / ^{\circ}C$			
TPC10	0.6W	200V	400V	1Ω~1MΩ	F (±1%)	-55°C~+155°C		+25°C~+155°C	$\pm 200 \times 10^{-6} / ^{\circ}C$			
					D (±0.5%)	-55°C~+155°C	٧	+25°C~+155°C	$\pm 100 \times 10^{-6} / ^{\circ}C$			

(*1) Rated voltage = $\sqrt{Rated\ power \times Resistance\ value}$


In the case of rated voltage over above limiting element voltage, limiting element voltage will be the maximum.

- (*2) The applied voltage in short time overload test = 2.5 × rated voltage
 In the case of the applied voltage in short time overload test over above maximum overload voltage, maximum overload voltage will be the maximum.
- *There are the supplementary information about rating on reference page.
- *Temperature Coefficient of Resistance (T.C.R) is based on JIS C5201-1 6.2 between two points: 25°C and 125°C.

■Specifications and test methods

Item	Specifications	Test method				
Overload	± (2%+0.05 Ω)	JIS C5201-1 8.1				
Overload	± (2 %+0.05 \(\frac{1}{2}\))	2.5 × Rated voltage, for 5 seconds				
Bend strength of the	± (1%+0.05 Ω)	JIS C5201-1 9.8				
face plating	± (1/0±0.05Ω)	Bending distance : 3mm				
Resistance to	± (1%+0.05 Ω)	JIS C5201-1 11.2				
soldering heat	± (1%+0.05Ω)	260 ± 5°C.10(sec.)				
Solderability	Covered with more than 95%	JIS C5201-1 11.1				
Solderability	Covered with more than 95%	245 ± 3°C.2(sec.)				
Rapid change of	± (1%+0.05 Ω)	JIS C5201-1 10.1				
temperature	± (1%+0.05Ω)	-55°C ⇔ +125°C,1000(times)				
Loadlife in humidity	± (2%+0.05 Ω)	60 ± 2°C. 90~95% R.H 1000h				
Endurance at 70°C	± (2%+0.05 Ω)	JIS C5201-1 7.1				
Lindurance at 70 C	÷ (2/0+0.05Ω)	70 ± 2°C.1000h				

■ Derating curve

- *Rated power of the resistor is the maximum power which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70 °C, please use according to the load derating curve (dotted line). Please note that the component surface temperature does not exceed operating temperature range.
- * If the component temperature is below 155°C, the power rating can be used according to the load derating curve in the solid line.