Anti-sulfurated · anti-surge chip resistors RXZseries

RXZ10 (0805) RXZ18 (1206) RXZ33 (1210)

*(): Inch size

Not recommended: RXZ18(1206), RXZ33(1210)

■Features

- 0805 size 0.25W
- · RoHS qualified
- · ELV qualified
- · AEC-Q200 qualified

*This is only a schematic drawing of the structure.

• The use of special inside termination contribute to high performance of anti-sulfuration.

■Part No. Explanation (Example)

■Part No. Explanation (Example)									
R X Z	R X Z 1 0			Т		1	0	3	J
		-			-				
Product type		Rated power		Packaging form		Nominal			Resistance
r roduct type		and Size		r ackaging form		resistance			tolerance
RXZ:	18:0.33W.	10:0.25W,0805		T : 4mm pitch taping ϕ 180 reel		The resistance value is indicated		1+50/	
Anti-surge		18:0.33W,1206							
Allti-Surge		33:0.5W,1210				by 3-c	digit nur	mbers.	1 - 1/6

^{*}The first two numbers are significant numbers,

and the third one is the number of zeros "0" following to the first two numbers (multiple of 10).

■Dimensions

st External dimensions are for reference only.

 ${\sf Overcoat\ film\ color\ : Black}$

The resistance value is indicated by 3-digit numbers. Indication color of resistance value: yellow

	L	W	Т	С	d
RXZ10	2.00 ± 0.15	1.25 ± 0.15	0.55 + 0.10 - 0.05	0.25 + 0.20 - 0.10	0.40 ± 0.15
RXZ18	3.10 + 0.20 - 0.10	1.55 ± 0.15	0.55 + 0.10 - 0.05	0.35 ± 0.20	0.50 + 0.20 - 0.15
RXZ33	3.10 + 0.20 - 0.10	2.60 ± 0.15	0.60 ± 0.10	0.35 ± 0.20	0.50 + 0.20 - 0.15

Not recommended : RXZ18(1206), RXZ33(1210)

(Unit: mm)

^{*}If there is a decimal point in resistance value, it is indicated by "R" and all numbers are significant numbers.

■ Ratings

	Rated power	Limiting element voltage(*1)	Maximum overload voltage(*2)	Range of rated resistance	Tolerance on rated resistance	Category temperature range	Temperature Coefficient of Resistance(T.C.R)	
RXZ10	0.25W	150V	200V	1.0 Ω ~10M Ω	J(±5%)	-55°C~+155°C	1.0Ω~9.1Ω	$\pm 250 \times 10^{-6}$ /°C
							$10\Omega\!\sim\!10M\Omega$	$\pm 200 \times 10^{-6}$ /°C
				1.0Ω~1.5MΩ	F(±1%)	-55°C~+155°C	1.0Ω~9.1Ω	$\pm 250 \times 10^{-6}$ /°C
							$10\Omega\!\sim\!1.5M\Omega$	$\pm 200 \times 10^{-6}$ /°C
RXZ18	0.33W	200V	400V	1.0 Ω ~10 Μ Ω	J(±5%)	-55°C~+155°C	1.0Ω~9.1Ω	± 250 × 10 ⁻⁶ /°C
							10Ω~10MΩ	± 200 × 10 ⁻⁶ /°C
				1.0Ω~1MΩ	F(±1%)	-55°C~+155°C	1.0Ω~9.1Ω	$\pm 250 \times 10^{-6}$ /°C
					F(±1%)	-55 C~+155 C	10Ω~1.5MΩ	± 200 × 10 ⁻⁶ /°C
RXZ33	0.5W	200V	400V	1.0 Ω ~10 Μ Ω	J(±5%) F(±1%)	-55°C~+155°C	1.0Ω~10MΩ	± 200 × 10 ⁻⁶ /°C

(*1) Rated voltage = $\sqrt{Rated\ power \times Resistance\ value}$

In the case of rated voltage over above limiting element voltage, limiting element voltage will be the maximum.

- (*2) The applied voltage in short time overload test = $2.5 \times$ rated voltage In the case of the applied voltage in short time overload test over above maximum overload voltage, maximum overload voltage will be the maximum.
- * There are the supplementary information about rating on reference page.

■Specifications and test methods

Item	Specifications	Test method				
Overload	± (2%+0.05Ω)	JIS C5201-1 8.1				
Overload	± (2%+0.03Ω)	2.5 × Rated voltage, for 5 seconds				
Bend strength of the	± (1%+0.05Ω)	JIS C5201-1 9.8				
face plating	± (1%±0.05Ω)	Bending distance : 3mm				
Resistance to	± (1%+0.05Ω)	JIS C5201-1 11.2				
soldering heat	± (1%±0.05Ω)	260 ± 5°C.10(sec.)				
Solderability	Covered with more than 95%	JIS C5201-1 11.1				
Solderability	Covered with more than 95%	245 ± 3°C.2(sec.)				
Rapid change of	± (1%+0.05Ω)	JIS C5201-1 10.1				
temperature	⊥ (1%+0.05Ω)	-55°C ⇔ +125°C,1000(times)				
Loadlife in humidity	± (3%+0.05Ω)	60±2°C.90~95% R.H 1000h				
Endurance at 70°C	± (3%+0.05Ω)	JIS C5201-1 7.1				
Lituurance at 70 C	÷(3%+0.03Ω)	70 ± 2°C.1000h				

- *Rated power of the resistor is the maximum power which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70 °C, please use according to the load derating curve (dotted line). Please note that the component surface temperature does not exceed operating temperature range.
- *When the component temperature is 155°C or less, the load reduction beginning temperature can be changed to 125°C of the dotted line.(solid line)