Anti-sulfurated · low resistance thick film chip resistor RXL series

RXL03 (0402) RXL05 (0603) RXL10 (0805)

RXL18 (1206) RXL33 (1210) RXL50 (2010)

RXL1S (2512)

*(): Inch size

Not recommended : RXL18(1206) RXL33(1210)

EOL (End of life) : RXL03(0402) RXL50(2010) RXL1S(2512)

■Features

- \cdot Lineup from $0.1\,\Omega$ low resistance value
- The use of special inside termination contribute to high performance of anti-sulfuration.
- · RoHS qualified
- · ELV qualified
- · AEC-Q200 qualified

^{*}This is only a schematic drawing of the structure.

■Structure

■ Part No. Explanation (Example)

R	Χ	L	0	3	_

Т

R 1 0

RXL:
low resistance value

Product type

Rated power
and Size
03:0.125W,0402
05:0.2W,0603
10:0.33W,0805
18:0.5W,1206
33:0.66W,1210
50:0.75W,2010
1S:1W,2512

Nominal			
resistance			
The resistance value			
is indicated			
by 3-digit numbers.			

Resista
nce
J±5% F±1%

(Unit: mm)

and the third one is the number of zeros "0" following to the first two numbers (multiple of 10).

■ Dimensions

- * External dimensions are for reference only.
- * There are no resistance value indication in RXL03.Yellow shows anti-sulfuration series.

Overcoat film color: Black

* External dimensions are for reference only.

Overcoat film color: Black

The resistance value is indicated by 3-digit numbers. Indication color of resistance value: yellow

	L	W	Т	С	d
RXL03	1.00 ± 0.05	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 + 0.10 - 0.05
RXL05	1.60 ± 0.15	0.80 ± 0.15	0.45 ± 0.10	0.30 ± 0.15	0.35 ± 0.15
RXL10	2.00 ± 0.15	1.25 ± 0.15	0.55 + 0.10 - 0.05	0.35 + 0.20 - 0.15	0.40 ± 0.15
RXL18	3.10 + 0.20 - 0.10	1.55 ± 0.15	0.55 + 0.10 - 0.05	0.45 ± 0.20	0.50 + 0.20 - 0.15
RXL33	3.10 + 0.20 - 0.10	2.60 ± 0.15	0.60 ± 0.10	0.45 ± 0.20	0.50 + 0.20 - 0.15
RXL50	5.00 ± 0.15	2.50 ± 0.15	0.60 ± 0.10	0.60 ± 0.20	0.60 ± 0.20
RXL1S	6.30 ± 0.20	3.20 ± 0.20	0.60 ± 0.10	0.60 ± 0.20	0.60 ± 0.20

Not recommended : RXL18(1206), RXL33(1210)

EOL (End of life) : RXL03(0402) , RXL50(2010) , RXL1S(2512)

^{*}The first two numbers are significant numbers,

^{*}If there is a decimal point in resistance value, it is indicated by "R" and all numbers are significant numbers.

■ Ratings

	Rated power	Range of rated resistance	Tolerance on rated resistance	Category temperature range	Temperature Coefficient of Resistance(T.C.R)
RXL03	0.125 W	0.22Ω~10Ω	J(±5%) F(±1%)	-55°C~+155°C	$0.22 \Omega \sim 10 \Omega$ $\pm 200 \times 10^{-6} / ^{\circ} \text{C}$
RXL05	0.2 W	0.10Ω~10Ω	J(±5%)	-55°C~+155°C	$0.10 \Omega \sim 0.20 \Omega$ $\pm 250 \times 10^{-6}$ °C
TOTALOS	0.2 **	0.1032 - 1032	F(±1%)		$0.22\Omega \sim 10\Omega$ $\pm 200 \times 10^{-6}$ °C
RXL10	0 0.33 W 0.10 $\Omega \sim 10\Omega$ $J(\pm 5\%)$ $F(\pm 1\%)$ $-55^{\circ}C \sim +155^{\circ}C$	-55°C~.±155°C	$0.10 \Omega \sim 0.20 \Omega$ $\pm 250 \times 10^{-6}$ °C		
IXXLIO		-55 6 + 155 6	$0.22\Omega \sim 10\Omega$ $\pm 200 \times 10^{-6}$ °C		
RXL18	RXL18 0.5 W	0.10Ω~10Ω	J(±5%)	-55°C~+155°C	$0.10 \Omega \sim 0.20 \Omega$ $\pm 250 \times 10^{-6}$ °C
IXXLIO	0.5 VV	0.1032 - 1032	F(±1%)		$0.22\Omega \sim 10\Omega$ $\pm 200 \times 10^{-6}$ °C
RXL33	RXL33 0.66 W	0.10Ω~10Ω	J(±5%) F(±1%) -55	-55°C~+155°C	$0.10 \Omega \sim 0.20 \Omega$ $\pm 250 \times 10^{-6}$ °C
IVALSS	0.00 W	0.1032~1032		-55 C~+155 C	$0.22\Omega \sim 10\Omega$ $\pm 200 \times 10^{-6}$ °C
RXL50	0.75 W	0.75 W 0.10 Ω ~10 Ω	J(±5%)	-55°C~+155°C	$0.10 \Omega \sim 0.20 \Omega = \pm 250 \times 10^{-6} \text{°C}$
KALSU 0.73	0.75 W		F(±1%)		$0.22\Omega \sim 10\Omega$ $\pm 200 \times 10^{-6}$ °C
RXL1S	1 W	0.10Ω~10Ω	J(±5%)	-55°C~+155°C	$0.10\Omega \sim 0.20\Omega$ $\pm 250 \times 10^{-6}$ °C
IVVLIS	Τ ۷Λ	0.1032~1032	F(±1%)		$0.22\Omega \sim 10\Omega$ $\pm 200 \times 10^{-6}$ °C

- * Rated voltage = $\sqrt{Rated\ power \times\ Resistance\ value}$
- * There are the supplementary information about rating on reference page.
- *Temperature Coefficient of Resistance (T.C.R) is based on JIS C5201-1 6.2 between two points:25°C and 125°C.

■Specifications and test methods

Item	Specifications	Test method
Overload	± (2%+0.005 Ω)	JIS C5201-1 8.1
Overload	± (2/0+0.00312)	2.5 × Rated voltage, for 5 seconds
Bend strength of the	± (1%+0.005Ω)	JIS C5201-1 9.8
face plating	± (1/0+0.00312)	Bending distance : 3mm
Resistance to	± (1%+0.005Ω)	JIS C5201-1 11.2
soldering heat	± (1/0+0.00312)	$260 \pm 5^{\circ}\text{C.}10(\text{sec.})$
Solderability	Covered with more than 95%	JIS C5201-1 11.1
	Covered with filore than 95%	245 ± 3°C.(sec.)
Rapid change of	± (1%+0.005Ω)	JIS C5201-1 10.1
temperature	± (1/0+0.00312)	-55°C ⇔ +125°C,1000(times)
Loadlife in humidity	± (3%+0.005Ω)	60±2°C.90~95% R.H 1000h
Endurance at 70°C	± (3%+0.005 Ω)	JIS C5201-1 7.1
	± (5%+0.00512)	70 ± 2°C.1000h

■ Derating curve

*Rated power of the resistor is the maximum power which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70 °C, please use according to the load derating curve (dotted line). Please note that the component surface temperature does not exceed operating temperature range.