Anti-surge thick film chip resistors RPZ series

RPZ10 (0805) RPZ18 (1206) RPZ33 (1210)

*(): Inch size

Not recommended: RPZ18(1206), RPZ33(1210)

■Features

- · 0805 size 0.25W
- · RoHS qualified
- \cdot ELV qualified
- · AEC-Q200 qualified

^{*}This is only a schematic drawing of the structure.

■ Part No. Explanation (Example)

R P Z	1 0	Т	1 0 3	J
Product type	Rated power and Size	Packaging form	Nominal resistance value(*)	Resistance tolerance
RPZ: Anti-surge	10:0.25W,0805 18:0.33W,1206 33:0.5W,1210	T: 4mm pitch taping ϕ 180 reel	The resistance value is indicated by 3-digit numbers.	J±5% F±1%

^{*}The first two numbers are significant numbers, and the third one is the number of zeros "0" following to the first two numbers (multiple of 10).

Dimensions W 103 T T d

* External	dimensions	are for	reference	only.

	L	W	Т	С	d
RPZ10	2.00 ± 0.15	1.25 ± 0.15	0.55 + 0.10 - 0.05	0.25 + 0.20 - 0.10	0.40 ± 0.15
RPZ18	3.10 + 0.20 - 0.10	1.55 ± 0.15	0.55 + 0.10 - 0.05	0.35 ± 0.20	0.50 + 0.20 - 0.15
RPZ33	3.10 + 0.20 - 0.10	2.60 ± 0.15	0.60 ± 0.10	0.35 ± 0.20	0.50 + 0.20 - 0.15

Overcoat film color : Red
Not recommended : RPZ18(1206) , RPZ33(1210)

The resistance value is indicated by 3-digit numbers.

(Unit: mm)

 $[\]hbox{*If there is a decimal point in resistance value, it is indicated by "R" and all numbers are significant numbers.}$

■ Ratings

	Rated	Limiting element voltage(*1)	Maximum overload voltage(*2)	Range of rated resistance	Tolerance on rated resistance	Category temperature range	Temperature Coefficient of Resistance(T.C.R)		
			200V	1.0 Ω ~10 M Ω	J(±5%)	-55°C~+155°C		1.0 Ω ~ 9.1 Ω	±250×10-6/°C
RP710	RPZ10 0.25W 150V	150V						10Ω~10MΩ	± 200 × 10 - 6/°C
111 210		2000	1.0Ω~1.5MΩ	F(±1%)	-55°C~+155°C		1.0 Ω ~ 9.1 Ω	±250×10-6/°C	
							10Ω~1.5MΩ	±200×10-6/°C	
				1.0 Ω ~10 M Ω	J(±5%)	-55°C~+155°C		1.0 Ω ~ 9.1 Ω	± 250 × 10 ⁻⁶ /°C
RPZ18 0.33W 200V	2007	200V 400V	1.032 1010132	3(=370)	-33 0+133 0		10Ω~10MΩ	±200×10-6/°C	
	2001		1.0Ω~1MΩ	F(±1%)	-55°C~+155°C		1.0 Ω ~ 9.1 Ω	± 250 × 10 ⁻⁶ /°C	
				1.032 110132	1 (-170)	33 0 1133 0		10Ω~1.5MΩ	±200×10-6/°C
RPZ33	0.5W	200V	400V	1.0 Ω ~10 Μ Ω	J(±5%) F(±1%)	-55°C~+155°C		1.0Ω~10MΩ	±200×10 ⁻⁶ /°C

(*1) Rated voltage = $\sqrt{Rated\ power \times Resistance\ value}$

In the case of rated voltage over above limiting element voltage, limiting element voltage will be the maximum.

- (*2) The applied voltage in short time overload test = $2.5 \times$ rated voltage In the case of the applied voltage in short time overload test over above maximum overload voltage, maximum overload voltage will be the maximum.
- * There are the supplementary information about rating on reference page.
- *Temperature Coefficient of Resistance (T.C.R) is based on JIS C5201-1 6.2 between two points: 25°C and 125°C.

■Specifications and test methods

Item	Specifications	Test method			
Overload	± (2%+0.05Ω)	JIS C5201-1 8.1			
Overload	± (2/0+0.03\frac{1}{2})	2.5 × Rated voltage, for 5 seconds			
Bend strength of the	± (1%+0.05Ω)	JIS C5201-1 9.8			
face plating	± (1%±0.03\2)	Bending distance : 3mm			
Resistance to	± (1%+0.05Ω)	JIS C5201-1 11.2			
soldering heat	± (1%+0.05Ω)	260 ± 5°C.10(sec.)			
Solderability	Covered with more than 95%	JIS C5201-1 11.1			
	Covered with more than 95%	245 ± 3°C.2(sec.)			
Rapid change of	± (1%+0.05Ω)	JIS C5201-1 10.1			
temperature	± (1%+0.05Ω)	-55°C ⇔ +125°C,1000(times)			
Loadlife in humidity	± (3%+0.05 Ω)	60±2°C.90~95% R.H 1000h			
Endurance at 70°C	± (3%+0.05Ω)	JIS C5201-1 7.1			
Endurance at 70°C	± (3 /0+0.05 Ω)	70 ± 2°C.1000h			

■Derating curve

- *Rated power of the resistor is the maximum power which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70 °C, please use according to the load derating curve (dotted line). Please note that the component surface temperature does not exceed operating temperature range.
- * When the component temperature is 155°C or less, the load reduction beginning temperature can be changed to 125°C of the dotted line.(solid line)